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Abstract 
This study1 addressed the problem of why students with learning disabilities in mathematics too 
often fail to develop multiplicative and divisional concepts/operations. We conducted a 
constructivist teaching experiment with 12 students (nine 5th and three 4th graders). This report 
focuses on three students’ conceptual progress, particularly on Sandy’s (most pronounced). Our 
analysis indicates that, at the outset, those three could only reason additively because they lacked a 
robust concept of number as an abstract composite unit and were bound to rely on strategies of 
counting units of one. Once teaching engendered a concept of number in them, they made 
substantial advances. We argue that lacking the concept of number is a decisive cause for setting 
students at risk of failing to advance beyond additive reasoning, and that assessing this conceptual 
cause is vital for providing effective pedagogical interventions. 
 
1. Purpose 
This study addressed the problem of why do so many elementary students with learning disabilities 
(SLDs) in mathematics fail to construct multiplicative concepts/operations. Addressing this problem 
is important for two interrelated reasons. First, the transition from additive to multiplicative ways of 
operating is considered a major hurdle in the elementary school, yet a crucial one to promote if 
students are to ever develop mathematical powers beyond arithmetic (Harel & Confrey, 1994). This 
transition seems particularly difficult for students with or at risk of developing learning disabilities 
in mathematics (Xin, in press). We address the conceptual source for this difficulty by using the 
comprehensive framework proposed by Steffe and his colleagues (Steffe & Cobb, 1988; Steffe & 
von Glasersfeld, 1985; Steffe, von Glasersfeld, Richards, & Cobb, 1983) for analyzing numerical 
thinking. This framework emphasizes two fundamental components: (1) the units a learner operates 
on and (2) the particular nature of the child’s operations, including the goal/intention toward which 
her operations are directed. The specific operations and units that distinguish multiplicative from 
additive reasoning are presented in the next section. Here, we note that a review of the literature, 
either within mathematics education (Fuson, 1992; Greer, 1994; Verschaffel, Greer, & Torbeyns, 
2006) or special education (Cawley and Parmar, 2003; Cawley, Parmar, and Foley, 2001; Fuchs and 
Fuchs, 2005; Schmidt and Weiser, 1995), did not reveal an in-depth analysis of conceptual sources 
for difficulties exhibited by SLDs. 

The second reason is the need to provide a pedagogical approach that can effectively promote 
SLDs’ progress to multiplicative reasoning. In particular, the NCTM (2000) Principles and 
Standards and the National Educational Goals Panel (1997) documents emphasized the need to 
promote problem solving and conceptual understandings in all students. The students with whom 
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we worked are typical examples of the failure of the educational system to do so (see, for example, 
Carnine et al., 1994). As we shall further report in the Analysis section, after 4-5 years in the public 
school system, they barely developed mathematical understandings that, according to state 
standards (IN), are expected of first graders. Because they were 4th or 5th grade students, their 
school work typically included repetitive exercises of 1- and 2-digit multiplication and division 
problems and/or the four operations with fractions. Indeed, they were unable to successfully solve 
such problems and were thus identified as disable or at risk of disability in mathematics. It seemed 
that not only research, but also typical teaching in schools does not identify the conceptual sources 
for these inabilities and is not tailored to what SLDs already do know (see more in the Conceptual 
Framework below). This study reports on our twofold attempt to both identify and rectify 
conceptual constraints and affordances for their learning. 
 
2. Conceptual Framework 
 
In this section we briefly describe key general and content specific constructs of a conceptual 
framework that guided our study and pedagogical intervention. The general constructs pertain to 
learning (conceptual change) and corresponding teaching of mathematical ideas; content specific 
constructs pertain to the units and operations that distinguish multiplicative from additive reasoning. 
  
2.1 General Constructs 
 
Building on the core constructivist notions of assimilation, reflection, and anticipation (Piaget, 
1971, 1985), and on von Glasersfeld’s (1995) tripartite model of a scheme (situation/goal, activity, 
expected result), Tzur et al. articulated the mechanism and stages by which a learner abstracts 
conceptually advanced mathematical ideas as transformation in her existing schemes/conceptions 
(Simon & Tzur, 2004; Simon, Tzur, Heinz, & Kinzel, 2004; Tzur, 2007, 2008b, accepted for 
publication; Tzur & Simon, 2004). The mechanism was coined reflection on activity-effect 
relationship (Ref*AER), and it specifies Piaget’s (1985) notion of reflective abstraction for the 
purpose of guiding mathematics teaching. The Ref*AER mechanism refers to two types of 
comparisons the human brain processes. Ref*AER Type-I consists of comparisons between the goal 
(anticipated effect) set by the learner’s scheme and the actual effect(s) of the scheme’s activity. The 
learner’s goal regulates her noticing of discrepancies between the two, and may engender 
adjustments to and re-execution of the activity that are recorded as ‘experience instances.’ Ref*AER 
Type-II consists of comparisons across those recorded experience instances. It leads to the 
abstraction of what is anticipated to remain invariant in the use of the novel activity-effect link 
across different situations, that is, it characterizes the ‘sameness’ of those situations.  
 
The Ref*AER framework suggests that for the majority of learners a new mathematical 
understanding does not evolve all-at-once. Rather, reflection Type-I brings about the construction of 
a provisional stage of the new understanding, termed participatory. Here, the learner forms a novel 
mental link between the scheme’s activity and effects that were previously unanticipated by the 
learner. This link is provisional in the sense that the learner can call upon it for problem solving 
only if somehow prompted for the activity to be used. The notorious ‘oops’ experience is 
characteristic of the participatory stage; a learner carries out the activity to its effect, then notices 
she should have known the effect in advance (but did not). By definition, the participatory stage 
implies that if prompts are not supplied, previously established schemes will ‘interfere’ in the 



learner’s problem solving processes, an implication that is consistent with Siegler’s (1995, 2000, 
2003) Overlapping Waves Theory (see also Tzur, 2000; Tzur, 2004 for explanation of whole 
number interferences in fractional situations). Following the construction of a novel, participatory 
activity-effect anticipation a learner may form the more stable stage termed anticipatory. Here, she 
can independently and spontaneously call upon, use, and justify the novel activity-effect 
relationship proper to the problem situation. The anticipatory stage is compatible with Sfard’s 
(1991) notion of structural understanding and with Dubinsky’s (Breidenbach, Dubinsky, Hawks, & 
Nichols, 1992; Dubinsky, 1991) notion of object understanding. Conceptually, the anticipatory 
stage seems a necessary condition for transferring newly acquired knowledge to different 
contexts/problems. The crucial point for teaching is that, unlike the automatic brain processing of 
Type-I reflection, Type-II, which is necessary for constructing the anticipatory stage, may not 
spontaneously occur in the learner’s brain (Tzur, accepted for publication). 
 
For pedagogy, the mechanism and stages outlined above imply engaging students in solving 
tasks/problems that serve 3 principal functions of learning: (a) fostering students’ assimilation of 
the tasks into their extant schemes, (b) orienting students’ attention so they notice new effects 
intended by the teacher (Type-I reflection), and (c) fostering reflection on and distinction/formation 
of the new, intended conceptions across problem situations (Type-II reflection). In such a 
conception-based perspective (Simon, Tzur, Heinz, Kinzel, & Smith, 2000), problem situations are 
continually tailored to the dynamic windows-of-opportunity (Noss & Hoyles, 1996) that proceed 
from students’ extant conceptions to the intended mathematical understandings. The threefold 
function of tasks entails a cyclic process of seven principal teaching activities, which further 
extends Simon’s (1995) notion of hypothetical learning trajectory. The cycle always begins by 
articulating student assimilatory conceptions.  

1) Specifying students’ current conceptions by inferring into mental processes that might 
underlie their work on previous tasks: goals they seemed to set, mental activities they likely 
executed, and effects they likely noticed and linked to the activities.  

2) Specifying the pedagogical goal for student learning by decomposing intended conceptions 
into their components—goals, activities, effects, and invariant relationships among them.  

3) Identifying a mental activity sequence that, when ‘triggered’ in students, may generate the 
intended effects, reflections, and relationship. An activity sequence must be identified 
relative not only to the intended conceptions but also to the students’ extant conceptions.  

4) Selecting tasks by deciding on an initial problem situation and follow-up prompts. This is 
based on explicit hypotheses about (a) how students may assimilate the tasks into and use 
their extant conceptions, (b) notice intended effects, and (c) reflect on new activity-effect 
relationship.  

5) Engaging students in the tasks while making sure students solve them using their goal for 
regulating their activity. This is a delicate challenge; it requires continual negotiation of 
students’ task interpretation so that their goal is compatible with the teacher’s without 
sliding into a futile attempt to govern students’ (internal) goals. 

6) Monitoring students’ progress by continually examining their actual work: which goals 
seem to regulate their activities, which (mental) activities they seem (inferred) to employ, 
which effects they seem to notice, and which reflections they seem to undertake.  
7) Introducing follow-up questions/prompts, planned or adjusted in real-time. Such follow-ups 
enable indirectly orienting students’ attention so they reflect on effects of their goal-regulated 
activity and relate them with the activity. Activities #6 and #7 feed back into activity #1. 



 
 
Content-Specific Constructs 
 
Steffe et al. (1985; 1983) suggested that children’s conceptualization of number is abstracted via 
reflection on and coordination of mental operations on objects, particularly counting. Once 
numerosity of a collection of objects is anticipatory (the child anticipates and uses the result of 
counting without carrying it out), she can progress to solving addition and subtraction problems via 
Counting-All. Given two collections and having counted each (say, 4 & 3), and asked how many 
items are in both, the child would begin recounting the first collection from 1, then continue to the 
second: 1-2-3-4; 5-6-7. Through Ref*AER on the invariant starting point for the second collection 
(the number after the anticipated numerosity of the first collection, n+1), she abstracts the scheme 
of Counting-On. This scheme coordinates anticipation of (a) where to start and (b) the need to keep 
track of how many items of the second collection were counted (e.g., Four; five-is-1, six-is-2, 
seven-is-3; so 4+3=7). The latter has been termed double counting, because the child 
simultaneously counts the 1’s of the second addend as belonging to two number sequences. Such a 
counting scheme indicates that the child’s meaning (at least) for the first collection is of an abstract 
composite unit. It’s taken for granted as a single, numerical quantity that symbolizes for the child 
the potential effect of counting and is thus available as input for further operations. Steffe et al. 
attributed the concept of number to a child who anticipates the combination of where to start and 
how to monitor where to stop counting. Lambert and Tzur (2009) have recently demonstrated that 
each of these invariants (know where to start, know where to stop via counting one’s own counting 
acts) includes a participatory stage, at which the child cannot yet call upon counting-on without a 
prompt and is likely to ‘revert’ to using counting-all, thus at risk of being left behind.  
 
Counting-on provides the conceptual basis for further additive operations on abstract composite 
units, such as counting-up to solve a missing addend problem (e.g., for 3+?=7 the child would 
count, “3; 4-5-6-7” while keeping track of how many numbers were said for the second addend). It 
also provides the basis for using strategies such as ‘Through-10’ (e.g., 8+5=? is solved by 
decomposing the second number (composite unit of 5) into two sub-units (e.g., 2+3) and then 
adding 8+2=10 and 10+3=13). Eventually, these strategies may lead to a child’s anticipation and 
retrieval of invariant addition facts (e.g., ‘6+6=12’, as well as ‘6+5=11 because it’s one less than 
6+6’). What marks all additive operations on units is that the nature of units upon which one 
operates does not change (e.g., 4 apples + 4 apples + 4 apples = 12 apples, which essentially means 
figuring out that ‘4 units of one + 4 units of one + 4 units of one = 12 units of one’). 
 
On the other hand, multiplicative reasoning—a central mathematical theme in grades 3-5 (NCTM, 
2000)—involves not merely computing multiplication and division with numbers but rather making 
sense of activities of coordinating quantities in problem situations. A key difference between 
additive and multiplicative reasoning is that in the latter the items of one composite unit are 
distributed over the items of a second composite unit to produce a third composite unit (e.g., 17 
dogs X 4 legs-per-dog = 68 legs). Schwartz (1991) characterized this difference as referent 
preserving composition (additive) and referent transforming composition (multiplicative). There is a 
wide range of analyses regarding multiplicative structures and operations (Confrey & Harel, 1994). 
Schwartz’s distinction grew out of focus on relationships among the three terms in multiplicative 
problem situations (factor-factor-product) and distinguishing between the factors: an intensive 



quantity (unit rate, UR) and an extensive quantity (CUs). Vergnaud (1994) introduced the notion of 
multiplicative conceptual field, while sorting multiplicative problem structures into three types, 
isomorphism of measures, product of measures, and multiple proportions. He pointed out 
difficulties in representing the intensive quantity because it is about quantification of an abstract 
relation between other quantities.  
 
Our work, and this study in particular, drew on the developmental analysis provided by Steffe 
(1994) and his colleagues (Steffe and Cobb, 1988, 1998), because it articulates how children 
construct pre-multiplicative, multiplicative, and part-to-whole unit-coordinating schemes 
(conceptions) as transformation in their additive, iteration-based, number schemes. For example, on 
the basis of the construct of a child’s anticipation, Steffe and Cobb (1998) distinguished between 
two children’s conceptualization as indicated by their solution for the problem of “4 x 5.” The more 
conceptually advanced child, Jason, anticipated the operation of double counting—producing and 
iterating a composite unit of “5” four times. That is, Jason constructed “5” as an iterable composite 
unit for which he could anticipate the need to coordinate (distribute across) two counting schemes—
counting by ones and counting by an iterable composite unit (e.g., 1-is-5, 2-is-10, 3-is-15, 4-is-20). 
The less advanced child, Peter, could only implement his concept of multiplication by first 
producing composite units of five. For Peter, each “5” he produced via circling five units of one 
constituted a different entity. He was able to then count the total of items in all four circles, but he 
did not seem to regard all “fives” as essentially the ‘same’ entity. Although the distinction between 
the participatory and anticipatory stages was not available at the time, using it for re-analyzing 
Steffe and Cobb’s data indicates to us that Peter could notice the relationship between his activity of 
creating one composite unit after another and the effect of possibly counting those units only after 
he actually produced and operated on them—a typical manifestation of the participatory stage.  
 
SLDs’ capacity (or lack thereof) to double count (multiplicatively) in anticipation as did Jason 
served as a major conceptual benchmark in our study. At issue is that such double counting requires 
operation on number as an abstract (numerical) composite unit. Once a child constructs 
multiplicative double counting at the anticipatory stage, further distinction, selection, and operation 
on units of one vs. composite units can be promoted (e.g., solving how many bags of 6 cookies in 
each would there be if one has 5 bags and 18 more cookies). Tzur et al. (2009) have reported on the 
construction of an anticipatory stage of such a mixed-unit coordination scheme, which includes a 
divisional operation on the 18 units of one. This scheme provides a necessary conceptual ‘bridge’ 
between multiplication and division, and for the later construction of algebraic ideas, and was thus 
considered as the intended goal for our SLDs’ learning. 
 
3. Methods 
 
The qualitative, constructivist teaching experiment (Cobb & Steffe, 1983; Steffe, Thompson, & von 
Glasersfeld, 2000) method was used with twelve SLDs  (nine 5th graders and three 4th graders) in 
two elementary public schools in the US Midwest. This experiment was conducted within the larger 
context of the NSF-funded project, Nurturing Multiplicative Reasoning in Students with Learning 
Disabilities in a Computerized Conceptual-Modeling Environment (NMRSD-CCME). About 26 
weekly teaching episodes of 25-35 minutes were conducted with each child (individually or in 
pairs) over the course of 8 months. The participants were those students identified by their school as 
requiring special pedagogical attention in mathematics. This sample reflected the shift in 



identification models in the state of Indiana, away from the old discrepancy model (1-1.5 STD 
between the student’s IQ and math performance) to a Response-to-Intervention (RTI) model. The 
latter identifies students as having learning disability in math even if, for example, their IQ score is 
at the 85th percentile and their math score is at the 80th. The twelve SLDs included all students 
identified by the schools as SLDs in mathematics, that is, an exhaustive sample. 
 
An initial assessment of every student’s assimilatory conceptions was conducted via an individual 
diagnostic interview that used the instrument found in Appendix A. It revealed nine SLDs who have 
already constructed the concept of number and were thus placed in the ‘Multiplicative Reasoning 
Group’. This research report focuses on the other three SLDs, who we initially placed in the 
“Additive Reasoning Group’. In particular, those three used counting-all to solve problem #1, and 
were unable to solve problems #2a (missing 1st addend), #2b (missing 2nd addend), #4 (procedural 
skip-counting, except for ‘Twos’ and ‘Fives’), #5 (missing both addends for composing a number in 
the second decade), and #6, #8a, #8b, #10, #13, and #14 (multiplication/division problems, which 
students in the ‘Multiplication Group’ also failed initially). We hoped to support those three 
students’ construction of abstract composite units to an extent that would allow advancing them to 
multiplicative reasoning—first to multiplicative double-counting (mDC) and then to multiplicative 
mixed-unit coordination (mMUC).  
 
The pedagogical intervention for promoting the three students’ construction of number proceeded 
from addition and subtraction realistic problems with one-digit numbers. They were first oriented to 
use Unifix cubes and/or beads on a two-row abacus. Later, they were asked to produce the two 
addends, which were immediately covered by the researcher (one collection and later both), and 
encouraged to substitute the concrete objects with figurative items, such as counting on their fingers 
or tapping motions (see Steffe, et al., 1983). To solve ‘covered item’ problems, the students brought 
forth, used, and justified the mathematical appropriateness of counting-on, counting-up, counting-
back-from, and through-10 strategies. Eventually, additive problem situations were presented to 
those three students in an abstract form, asking them to pretend quantities were produced and 
orienting them to use their numbers for the solution. Due to these students’ rather limited short-term 
memory, we did not stress memorization of additive facts, though some improvement could be 
detected particularly for small numbers. When solutions to ‘for pretend’ problems consistently 
indicated that an individual student among the three from the ‘Additive Reasoning Group’ had 
constructed an anticipatory stage of additive operations (or at least high participatory indicated by 
internal self-prompting soon after attempting a lower-level strategy), we re-placed her into the 
‘Multiplicative Reasoning Group’.  
 
The pedagogical intervention for promoting all students’ multiplicative reasoning engaged them in a 
few variations of a turn-taking, ‘platform’ game that the first author had created and termed “Please 
Go and Bring for Me …” (PGBM). Its base-format involves one player sending the other player to a 
box with Unifix Cubes located away from both of them to produce, and then bring back, a tower 
composed of a given number of cubes. After some ‘trips’ (2-9) for bringing the same-size tower 
each time, the ‘bringer’ was asked how many towers (i.e., Composite Unit, denoted CU) she 
brought, how many cubes are in each tower (i.e., unit rate, denoted UR), and how many cubes 
(denoted 1’s) there are in all (hereafter, N towers of M cubes each are symbolized as NTM; e.g., 5T4 
= 5 towers of 4 cubes each). The key feature of this game is the child’s repeated-but-clearly-
separated activity sequence of producing an anticipated composite unit out of so-many-1’s (hence, 



UR), followed by explicitly distinguishing between CU and 1’s-within-UR, and coordinating both 
into an anticipatory, single quantity (total 1’s). To promote multiplicative double counting at the 
anticipatory stage, this basic variation was first used with concrete cubes and towers, then with 
actual-but-covered items, and finally with abstract items (e.g., ‘Pretend I asked you to PGBM 4T7; 
how many cubes would you have in all?’). Obviously, the latter form of the game necessitates 
availability to the child of an abstract composite unit within her mental system. When a child 
seemed to operate consistently with mDC in the cubes/towers context, realistic word problems were 
also used, including orienting prompts to explicitly ‘translate’ units from those problems into cubes 
and towers or vice versa. Then, two higher-level variations of PGBM were used to promote 
construction of two, conceptually more advanced understandings: (a) multiplicative same unit 
coordination (mSUC) and (b) multiplicative mixed unit coordination (mMUC). The former might 
ask: “I placed 6T4 under the cover. How many towers will we have if you brought additional 3T4?” 
The latter, that Steffe and Cobb (1988) considered as a strong indication of an Explicitly Nested 
Number Sequence (scheme), might ask: “I covered 6T4 here and 12 cubes there. If you put all 12 
cubes into T4 and moved them under the other cover, how many towers will you have in all?” 
 
4. Data Sources and Analysis 
 
Data collection consisted of videotaped teaching episodes of about 25-35 minutes each with 
individual or pairs of students, as well as the written plans for each episode (about 26 per student). 
As implied by the teaching experiment methodology, SLDs’ learning was concurrently promoted 
and studied. Immediately following each episode, ongoing analysis (3-5 team members) focused on 
every child’s anticipation development. This ongoing analysis resulted in a tentative plan for the 
next episode(s), which the first author later revised into a final plan a day before the next episode. 
Retrospective analysis was conducted later, where conjectures about changes in a child’s 
anticipation were noted, and those noted claims were held in check against confirming and/or 
disconfirming evidence in the data. 
 
5. Results 
 
The critical point of departure in our results is the distinct contrast between the ‘Multiplicative’ and 
‘Additive’ groups. Our central argument, that the lack of a concept of number as an abstract 
composite unit is a plausible conceptual cause for inability to progress to multiplicative reasoning, 
proceeds from this contrast. All 12 SLDs in our exhaustive sample failed to independently initiate a 
solution to (let alone fully solve) multiplicative problems in the diagnostic interview (particularly 
#6, #8a, #8b, #10, #13, and #14). However, the diagnosis indicated that they did construct the 
prerequisite concept of number and could operate on it. They almost never used counting-all; and 
they properly used and justified counting-on, counting-up, and counting-back strategies. Particularly 
telling was these SLDs’ capacity to solve problem #5 by independently generating a number for the 
first addend, then figure out the second addend via one of these strategies. A few were also capable 
of reflecting on their first two solutions (e.g., 10+7=17, 9+8=17) and noticed an invariant between 
the twofold activity of reducing an addend by one while increasing the other by one, which they 
then anticipated to yield the same effect (sum, 17), so they could continue with 11+6=17, 12+5=17, 
etc.). Further, during the diagnostic interview, when prompted to solve problem #8a (Miguel’s 4 
bags of 3 marbles each) via modeling the situation with cubes, they did not rely on counting-all 
visible items, but rather on some rudimentary form of counting groups of 3 (e.g., 3; 6; 7-8-9; 10-11-



12). Our consequent work with them via the PGBM game and more realistic problems indicated 
their conceptual progress, which suggested to us that they previously failed to move beyond 
additive reasoning due mainly to inadequate instruction.  
 
In contrast, successful solutions of the three SLDs placed in the ‘Additive’ group were obtained 
primarily via counting all (i.e., operating solely on units of 1). Quite often, they were unable to 
operate on invisible units. For example, upon being prompted they would solve problem #8a by 
placing 3 cubes on the desk or drawing four groups of 3 circles (‘marbles’) each. Then, they would 
count each and every cube/circle (e.g., 1-2-3-4-5-6-7-8-9-10-11-12) without any indication that the 
grouping was considered. As we therefore predicted, when we attempted to teach them the base-
format of the PGBM game they could only solve the problem of how many total cubes there were if 
all cubes were visible and by counting-all. The report below begins after 6-8 sessions in which our 
pedagogical intervention for promoting additive reasoning indicated their evolving construction of 
number as an abstract composite unit (we do not claim that these sessions alone produced that 
conceptual leap). This report demonstrates how we could then capitalize on the conceptual 
prerequisite of number and use instruction tailored to their particular characteristics to promote 
construction of multiplicative reasoning and problem solving. 
 
Lia: After Lia’s return to the ‘Multiplicative’ group, it took us 12 additional episodes to nurture her 
ability to use multiplicative double counting (mDC) not only for solving, but also for posing equal-
group multiplication problems. To this end, we had to address two major individual issues. We 
realized that, for Lia, the PGBM context did not support her ability to solve problems. Guided by 
the notion of prompt, we therefore conducted a mini-interview with her to find what contexts in her 
real life were possibly providing supportive prompts for her distinction among and coordination of 
CU, UR, and 1’s. It turned out that buying shirts with buttons was such a context. Thus, we posed to 
her problems in this context to promote independent and willing engagement in the activity of 
double-counting composite units. For example, to solve, “Every shirt needs 6 buttons; you have 3 
shirts; How many buttons do you need?” without any concrete object available, Lia would count 6 
and raise her finger for one shirt, then repeat raising a finger for the 6-button groups in the two 
remaining shirts (e.g., 6; 12; 13-14-15-16-17-18). The second issue was Lia’s difficulty to pose a 
problem. She experienced serious difficulties in coordinating all 3 quantities involved into a single, 
coherent multiplicative situation (unit rate, number of units, total items). Her struggle to ‘simply’ 
utter problems such as, “If you bring 4 towers/shirts with 7 cubes/buttons in each, how many 
cubes/buttons you’d have in all?” pointed to this coordination as a conceptual stumbling block on 
the path to constructing a robust (beyond problem solving) anticipatory concept of multiplication. 
 
Sandy and Jen: Both girls progressed much faster than Lia. To illustrate the argument of number as 
a conceptual cause, we focus on Sandy’s most pronounced progress. It should be noted that Sandy 
was a fourth grader whose school identified as needing special support in mathematics, but not as a 
SLD in mathematics according to the traditional model. Within 11 episodes past her return to the 
‘Multiplicative’ group, Sandy could independently use mDC to both solve and pose multiplication 
problems in different contexts. Therefore, we advanced our teaching to the conceptually 
challenging, multiplicative mixed-unit coordination (mMUC) understanding in which both 1’s and 
composite units (CU) are operated upon. For example, she would solve (and later pose to the 
researcher) problems such as: Grandma baked cookies and placed them in 6 bags with 4 cookies in 
each; if she baked 12 more cookies and put those in bags of 4, how many bags would she have in 



all? To solve such a problem, she would spontaneously first organize in her mind and use her 
fingers to count how many bags were needed for additional 12 cookies (e.g., 4-is-1, 8-is-2, 12-is 3). 
She then proceeded to add the 3 bags to the initial quantity of 6 bags and answer, ‘Nine bags’. Her 
explanation of this two-step solution indicated that her overarching goal for the activities she carried 
out was to operate additively on the CU (bags). To this end, she established for herself a sub-goal of 
figuring out how many bags were needed for the 1’s (twelve cookies) and accomplished that sub-
goal via calling up her anticipated mDC for a part of the problem that was essentially divisional 
(which we were yet to teach her). 
 
Again, a much more robust anticipation of the units and operations/activities needed on them was 
required for Sandy to pose such mMUC problems, as she gradually learned to do after a few 
episodes of only solving such problems. To do so, she must have anticipated an entire activity 
sequence as well as the effect to be asked about (how many bags). That is, we inferred she first 
differentiated the 1’s from the CUs, then operated on the 1’s via mDC to compose a total of 1’s 
(e.g., 12 cookies) for which a whole number of CUs (e.g., 4 bags) could yield a whole number of 
UR (e.g., 3 cookies per bag), then adding the number of both given and composed CUs (6 bags + 3 
bags = 9 bags) to figure out the solution and be able to ‘check’ the researcher’s answer. Most 
importantly, she could carry out this entire complex activity sequence without shifting to operating 
on 1’s, as she responded in the beginning her problem solving (e.g., 18 cookies; 19-20-21; 22-23-
24; 25-26-27 cookies). Tzur et al.’s (2009) recent case study of another child who started with the 
“Multiplicative Reasoning Group” sheds light on how SLDs might make the transition from a 
participatory to an anticipatory stage of this highly sophisticated scheme. 
 
In closing of this section, we would like to make a cautionary note about Sandy’s (and Jen’s, not 
reported here) fast-pace progress in solving and posing mDC tasks, through mSUC tasks, all the 
way to mMUC tasks. Although we are convinced that the PGBM game in its varied formats is 
highly supportive of learning to distinguish among and multiplicatively coordinate CU, UR, and 
1’s, we do not claim that it could alone explain the rather rapid progress these two students made. 
Indeed, students from the ‘Multiplicative’ group, as well as Lia, made slower progress and 
encountered some serious conceptual stumbling blocks. What we do emphasize is the critical role 
that these girls’ consolidation of an anticipatory concept of number played in that fast-pace 
progress. We speculate that much of the needed conceptual prerequisites for such progress have 
already been in place prior to their return into the ‘Multiplicative’ group (e.g., distinguishing 1’s 
from groups, or anticipation of additive effects such as combining makes larger and subtracting 
makes smaller). However, the missing piece for applying those prerequisites lacked the ‘object’ 
upon which to operate multiplicatively, namely, number as an abstract composite unit. It seemed as 
if the construction of anticipatory number released a ‘conceptual spring’ in both Sandy and Jen, 
which brought forth their application of established operations to it (e.g., counting CUs and 1’s 
simultaneously—as in mDC, or organizing 1’s into and then adding CUs—as in mMUC). 
 
6. Scientific Significance 
 
At the beginning of our work with 12 SLDs, two 5th graders (Lia and Jen) and one 4th grader 
(Sandy) in our exhaustive sample (25%!) were reasoning additively at or below the 1st grade level. 
This study found that the reason for their disturbingly inadequate mathematical understandings was 
the lack of a robust concept of number to operate on/with. Unlike their nine SLD peers, whose 



inability to reason multiplicatively seemed to be rooted in instruction, these three girls were yet to 
construct the fundamental concept upon which coordination of equal-group units (CUs X UR) is 
used to produce a total number of 1’s they can figure out. Such coordination is needed for solving 
(and more importantly posing) realistic word problems in which unit items of one quantity (4 
buttons per shirt, 6 cookies per bag, 13 cubes per tower) is distributed across items of a composite 
unit with specific numerosity (5 shirts, 4 bags, 2 towers) to produce a third unit (total number of 
buttons, cookies, or cubes)(Schwartz, 1991). Promoting the girls’ establishment of the concept of 
number at an anticipatory stage opened the way for advancing their thinking to solving and posing 
multiplication problems via multiplicative double-counting (mDC, Lia), and to successfully doing 
this also for multiplicative mixed-unit coordination problems (mMUC, Jen and Sandy).  
 
Consequently, this study contributes to the knowledge base by identifying two interrelated plausible 
conceptual sources of SLDs’ mighty difficulties to reason multiplicatively. One source, indicated in 
the case of Lia, Jen, and Sandy, is the failure of school teaching to engender in SLDs a concept of 
number as an abstract composite unit—a thing in and of itself (Steffe, 1994; Steffe & Cobb, 1998; 
Steffe & von Glasersfeld, 1985). In such a case, SLDs’ are most likely to be left behind when their 
class progresses to multiplicative reasoning because they literally lack the mathematical object upon 
which one operates multiplicatively. A second source, indicated by the other nine participants in our 
sample, is the failure of school teaching to engender a transition to multiplicative reasoning in SLDs 
who do use numerical structures for strategic additive operations. Our work with both groups of 
children, mostly awaiting publication (but see Tzur, et al., 2009), demonstrated a useful set of 
pedagogical tasks designed on the basis of the reflection on activity-effect relationship framework 
(Simon, et al., 2004; Tzur, 2007, 2008a; Tzur & Simon, 2004). The teaching cycle embedded within 
this framework stresses tailoring teaching-learning interactions (e.g., PGBM game with its varied 
formats) to students’ assimilatory conceptions (Tzur, 2008b). Such tailoring includes finding 
contexts (e.g., shirts and buttons) that improve students’ ability to interpret and solve/pose the tasks. 
Not the least, in our work with the three SLDs their progress was made possible because of the 
particular attention to the two distinct stages of knowing (participatory and anticipatory) and two 
related types of reflection (anticipated vs. actual effect, across activity-effect records) through 
which number and multiplicative operations on/with it are conceptualized. All in all, this study 
demonstrated that when teaching does promote construction of and capitalizing on number as the 
conceptual prerequisite—substantial progress into multiplication and division can be nurtured.  
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Appendix A: Diagnostic Clinical Interview Instrument 
(Do not use without explicit permission from authors) 

(In the real instrument, problems were presented one per page, 16-point font) 

 
Math Riddles 

Introduction: 
I will give you several problems to solve. 
Some may be easy, others more difficult. 
Solve each problem the best you can. 
There are several ways to solve each problem (not just a single right answer). 
I am interested in your way of solving. 
To better understand your thinking, try to talk out loud when you work on a problem. 
I will ask you questions to clarify how you think; if I ask a question it does not say anything about whether your 
solution is right or wrong. 
It’s perfectly fine if you don’t know how to solve a problem; just let me know and we shall move on. 
Use any of the materials here whenever they are useful to you (point to the paper & pencil, 100‐Chart, Base‐10 
Blocks, Unifix Cubes, and Counters). It’s also perfectly fine to use your fingers. 
This is not a test. Your work will help us know how to program the software that the project is producing and 
how to teach you better in the weeks to come. 
 
Are you ready to start? 
 

Problem #1 
I will ask you to add two numbers using this chart. For example, if the problem was to hop 6 spaces (do this) and 
then 5 more spaces (do it), I’ll then ask you how far the cube is from the start. 
a. Please hop over 13 spaces. How far is the cube from the start? 
    Use the cube again to hop 6 more spaces. 
    How far from the start is it now? 
b. Let’s do another one. First hop over 47 spaces. 
    Now hop over 14 more spaces. 
    How far from the start is it now? 
c. If you will hop backward 7 spaces, how far from the start will the cube be? 
 

Problem #2: 
a. JoAnn marked 17 stars on the paper.  

She then covered some stars and left the rest uncovered. 
How many stars did she cover? 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



b. A baker baked 31 Smiley cookies. 
He packed some in the box and put the rest on the table. 
How many cookies did he pack in the box? 

 
 
 
 
 
 
 
 
 
 
 
 
 

Problem #3: 
Please complete the following sequences of numbers and let me know how do you know which number to write 
in each place: 

a.      3,    6,    9,   12, ______,  ______,  ______ 

b.     25,  33,  41,  49,  ______,  ______,  ______ 

c.     76,   83,   90, ______,  ______,  ______ 

d.      223,   218,   213,   208, ______,  ______,  ______ 

 
Problem #4: 

I know how to skip count by 4s (researcher counts out loud):  
4, 8, 12, 16, 20, 24, 28, 32, 36, 40. 

 
Can you skip‐count by 10?  
Can you skip‐count by 5?  
Can you skip‐count by 2?  
Can you skip‐count by 3?  
Can you skip‐count by other numbers? 

 
Problem #5: 

(Researcher gives an example of how ‘5’ can be produced by adding 4+1 or by 3+2, then asks): 
Suggest three different ways in which you can add two numbers to get 17. 
 

Problem #6: 
Miguel put all his marbles into 4 bags.  
In each bag he has 3 marbles.  
How many marbles does Miguel have? 
 

Problem #7: 
Write a number that is made of: 6 Tens, 3 Ones, and 5 Hundreds. 
 

Problem #8: 
a. Tara collects car toys.  
   Tara’s cars have 4 different colors (blue, green, red, yellow).  
   Before last Christmas, in each color Tara collected 6 cars.  
   How many cars did she collect before last Christmas? 

? 



 
b. For last Christmas, Tara’s parents gave her more cars, 6 were black and 6 were white.  
    How many cars did she have after Christmas? 
 

Problem #9: 
Superwoman spotted a burning building with some living creatures in it. 
Of course, she immediately set out to save them. 
She saved: 2 girls, 7 cats, 4 boys, 5 goldfish, and 6 dogs. 
How many pets did she save?  
 

Problem #10: 
A new computer game requires the player to organize spaceships in platoons (groups). 
A platoon must have exactly 7 spaceships. 
The player received 21 spaceships to begin the first game.  
How many full platoons can be made? 
 

Problem #11: 
a. Selina had several comic books.  
   Then, her brother Andy gave her 42 comic books.  
   Then, Selina had 67 comic books.  
   How many comic books did Selina have before receiving the books from Andy? 
 
b. Luis had 73 candy bars.  
   Then, Dina gave him some candy bars.  
   With the candy bars from Dina ‐ Luis has 122 candy bars.  
   How many candy bars did Dina give Luis? 
 

Problem #12: 
a. One teacher had 61 flashcards for his students.  
    Another teacher had 27 flashcards.  
    To have the same number of flashcards, how many does the second teacher need to obtain? 
 
b. Tiffany collected 23 bouncy balls.   
    Tiffany has 11 more balls than her friend, Elise.  
    How many balls does Elise have? 
 

Problem #13: 
Look at the chart below. I will cover it now (cover leaves one row and one column visible). 
Please find out and tell me, without lifting the cover, how many small squares there are. 

 
 
 

           

 
 

           

 
 

           

 
 

           

 
Problem #14: 

Nora took her five (5) children to the grocery stores. 
She promised to give each of them exactly four (4) brownies.  
Before shopping Nora does not have any brownies. 
She wants to buy exactly the number of brownies needed. 
How many brownies does Nora need to buy? 


